feat: LLM-powered model auto-configuration and improved onboarding
Major changes: - Add autoconfigure_models tool for intelligent model assignment - Implement LLM-based model selection using openclaw agent - Improve onboarding flow with better model access checks - Update README with clearer installation and onboarding instructions Technical improvements: - Add model-fetcher utility to query authenticated models - Add smart-model-selector for LLM-driven model assignment - Use session context for LLM calls during onboarding - Suppress logging from openclaw models list calls Documentation: - Add prerequisites section to README - Add conversational onboarding example - Improve quick start flow Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -112,9 +112,10 @@ export function createSetupTool(api: OpenClawPluginApi) {
|
||||
...DEV_LEVELS.map((t) => ` dev.${t}: ${result.models.dev[t]}`),
|
||||
...QA_LEVELS.map((t) => ` qa.${t}: ${result.models.qa[t]}`),
|
||||
"",
|
||||
"Files:",
|
||||
...result.filesWritten.map((f) => ` ${f}`),
|
||||
);
|
||||
|
||||
lines.push("Files:", ...result.filesWritten.map((f) => ` ${f}`));
|
||||
|
||||
if (result.warnings.length > 0)
|
||||
lines.push("", "Warnings:", ...result.warnings.map((w) => ` ${w}`));
|
||||
lines.push(
|
||||
|
||||
Reference in New Issue
Block a user